A long term strategy for the liquid argon TPC technique

NU-CHIPP meeting Université de Neuchatel

June 22, 2004

André Rubbia (ETH Zürich)

Abstract

- The liquid Argon TPC imaging has reached a high level of maturity thanks to many years of R&D effort conducted by the ICARUS collaboration.
- The ICARUS experiment, which acts as a sort of observatory for the study of neutrinos and the instability of matter, is starting to come together. In the summer of 2001, the first module of the ICARUS T600 detector passed brilliantly a series of tests. The year 2004 should see the detector's installation at the Underground Gran Sasso Laboratory and first data-taking should follow afterwards.
- In this talk, I will give a status report on independent ideas and on-going R&D for a 100 kton "single module" liquid Argon TPC. The scale of this module is set by the maximum size realistically achievable of the underground cavern. Larger masses can be achieved with multiple "modules". On surface, it is possible to conceive >300 kton modules. However, we think that physics calls for underground operation.

Liquid Argon TPC: an electronic bubble chamber

Bubble diameter ≈ 3 mm (diffraction limited)

Gargamelle bubble chamber

Medium
Sensitive mass
Density
Radiation length
Collision length

Heavy freon		
3.0	ton	
1.5	g/cm ³	
1.0	cm	
9.5	cm	
2.3	MeV/cm	

Medium	Liqu	uid Argon
Sensitive mass	Ma	ny ktons
Density	1.4	g/cm3
Radiation length	14.0	cm
Collision length	54.8	cm
dE/dx	2.1	MeV/cm

Liquid Argon medium properties

	Water	Liquid Argon
Density (g/cm ³)	1	1.4
Radiation length (cm)	36.1	14.0
Interaction length (cm)	83.6	83.6
dE/dx (MeV/cm)	1.9	2.1
Refractive index (visible)	1.33	1.24
Cerenkov angle	42°	36 °
Cerenkov d²N/dEdx (β=1)	≈ 160 eV ⁻¹ cm ⁻¹	≈ 130 eV ⁻¹ cm ⁻¹
Muon Cerenkov threshold (p in MeV/c)	120	140
Scintillation (E=0 V/cm)	No	Yes (≈ 50000 γ/MeV @ λ=128nm)
Long electron drift	Not possible	Possible (µ = 500 cm²/Vs)
Boiling point @ 1 bar	373 K	87 K

When a charged particle traverses LAr:

- 1) Ionization process
 - $W_{e} = 23.6 \pm 0.3 \text{ eV}$
- 2) Scintillation (luminescence)

 $W_{\gamma} = 19.5 \text{ eV}$

UV "line" (λ =128 nm \Leftrightarrow 9.7 eV)

No more ionization: Argon is transparent Only Rayleigh-scattering

3) Cerenkov light (if relativistic particle)

- **Charge**
- **Scintillation light (VUV)**

 \mathbb{P} Cerenkov light (if $\beta > 1/n$)

Scintillation & Cerenkov light can be detected independently !

Liquid Argon TPC: the big picture

physics calls for applications at two different mass scales

Precision studies of v interactions

Calorimetry

Near station in LBL facilities

- Ultimate nucleon decay searchesAstroparticle physics
- CP violation in neutrino mixing

Strong synergy and high degree of interplay

Need to coherently develop conceptual ideas within the international community

Vast "megaton" physics program

	Water Cerenkov (UNO)	Liquid Argon TPC
Total mass	650 kton	100 kton
Cost	≈ 500 M\$	Under evaluation
${ m p} ightarrow { m e} \pi^0$ in 10 years	1.6x10 ³⁵ years ε= 17%, ≈ 1 BG event	0.5x10 ³⁵ years ε= 45%, <1 BG event
$p \rightarrow v K$ in 10 years	0.2x10 ³⁵ years ε= 8.6%, ≈ 37 BG events	1.1x10 ³⁵ years ε= 97%, <1 BG event
$p \to \mu \pi K$ in 10 years	Νο	1.1x10 ³⁵ years ε= 98%, <1 BG event
SN cool off @ 10 kpc	194000 (mostly $v_e^- p \rightarrow e^+ n$)	38500 (all flavors) (64000 if NH-L mixing)
SN in Andromeda	40 events	7 (12 if NH-L mixing)
SN burst @ 10 kpc	≈330 v-e elastic scattering	380 v_e CC (flavor sensitive)
SN relic	Yes	Yes
Atmospheric neutrinos	60000 events/year	10000 events/year
Solar neutrinos	E _e > 7 MeV (central module)	324000 events/year E _e > 5 MeV

Review of massive underground detectors

A.Rubbia, Proc. XI Int. Conf. on Calorimetry in H.E.P., CALOR04, Perugia, March 2004

Proton decay: power of imaging

"Single" event detection capability

Accelerator neutrinos (I)

Accelerator neutrinos (II)

- To my mind, the Phase-II program should be designed to address as many issues as possible...
 - See the L/E dependence (at fixed L this means a WBB)
 - Measure $\delta(\Delta m_{23}^2) \approx 1\%$
 - Measure $\delta(\sin^2\theta_{23}) < 1\%$
 - Should improve sensitivity to sin²2θ₁₃ by a factor x5 or x10 w.r.t. to T2K phase I or precisely measure it (δ(sin²2θ₁₃) to be defined) if a signal was found at T2K
 - Find evidence for CPV ($\delta \neq 0$)
 - Fix the sign of Δm_{23}^2 (in fact, study matter effect via resonance, ...)
 - Observe $(\Delta m_{21}^2, \sin^2\theta_{12})$ oscillations in terrestrial experiments
 - Over-constrain the U_{PMNS} matrix (unitarity tests)
 - Search for non-standard interactions (LFV other than through oscillations in space)
 - ... (any other good idea) ...

Operation of a 100 kton LAr TPC in a future neutrino facility: Super-Beam: 460 v_{μ} CC per 10²¹ 2.2 GeV protons @ L = 130 km Beta-beam:15000 v_{e} CC per 10¹⁹ ¹⁸Ne decays with γ =75

A general purpose facility

 We are considering which detector will give us the largest chance to perform interesting and new physics in the years 2015-2025.

It appears that the ideal detector

- Should be <u>very massive</u> & <u>general purpose</u>, and not solely "tuned" to a given physics topic which might be relevant today, but not necessarily tomorrow...
- Should have the proper <u>energy resolution</u> to "see the oscillations", measure the oscillations parameters precisely and disentangle possible degeneracy
- Should have the granularity to potentially address all the existing $e/\mu/\tau$ flavors in the final states
- Should have a <u>clean NC, CC separation</u> and good <u>background suppression</u>
- Should address both accelerator & non-accelerator physics, hence be located underground (depth to be optimized)
- Should be ready to find the **unexpected** (many years will pass from design to data taking...)
- Should be <u>cost effective</u> ("physics-return"-wise)

It is also clear that one needs to consider the complete system detector + accelerator + beams simultaneously

- Need to systematically consider the physics of all possible beams, energies, baselines, intensities, …
- This is a challenging task that is somehow in progress, but has obviously not been fully completed.

Building block: 100 kton liquid Argon TPC detector

100 kton detector: milestones

<u>Nov 2003</u>: Venice Workshop

- Basic concepts: LNG tanker, signal amplification, single detector for charge imaging, scintillation and Cerenkov light readout
- Design given for proton decay, astrophysics v's, Super-Beams, Beta-Beams
- Stressed the need for detailed comparison: 1 Mton water versus 100 kton LAr detector
- Feb 2004: Feasibility study launched for underground liquid Argon storage
 - Industry: Technodyne (UK) mandated for the study (expert in LNG design)
 - Design provided as input to the Fréjus underground lab study
 - Salt mine in Poland being investigated as well as other possible sites

<u>March 2004</u>: NUINT04 Workshop

- Identification of a global strategy: synergy between 'small' and 'large' mass LAr TPC
- Intent to define a coherent International Network to further develop the conceptual ideas
- <u>April 2004</u> : Memo to the SPSC in view of the Villars special session (Sept. 2004)
- <u>May 2004</u> : CERN Workshop on a future Multi MW proton source
 - Envision a possible 10 kton full scale prototype (10% of the full detector)
 - Site/physics optimization deep underground (→ proton decay) or shallow (→ neutrino beam)

A tentative detector layout

Single detector: charge imaging, scintillation, Cerenkov light

Dewar	$_{\phi}$ \thickapprox 70 m, height \thickapprox 20 m, perlite insulated, heat input \thickapprox 5 W/m²
Argon storage	Boiling Argon, low pressure (<100 mbar overpressure)
Argon total volume	73000 m³, ratio area/volume ≈ 15%
Argon total mass	102000 tons
Hydrostatic pressure at bottom	3 atmospheres
Inner detector dimensions	Disc $\phi \approx 70$ m located in gas phase above liquid phase
Charge readout electronics	100000 channels, 100 racks on top of the dewar
Scintillation light readout	Yes (also for triggering), 1000 immersed 8" PMTs with WLS
Visible light readout	Yes (Cerenkov light), 27000 immersed 8" PMTs of 20% coverage, single γ counting capability

Charge extraction, amplification, readout

Detector is running in BI-PHASE MODE

- Long drift (≈ 20 m) ⇒ charge attenuation to be compensated by charge amplification near anodes located in gas phase (18000 e⁻/ 3 mm for a MIP in LAr)
- Amplification operates in proportional mode
- After maximum drift of 20 m @ 1 kV/cm \Rightarrow diffusion \approx readout pitch \approx 3 mm

Electron drift in liquid	20 m maximum drift, HV = 2 MV for E = 1 kV/cm, $v_d \approx 2 \text{ mm/}\mu$ s, max drift time $\approx 10 \text{ ms}$
Charge readout view	2 perpendicular views, 3 mm pitch, 100000 readout channels
Maximum charge diffusion	$\sigma \approx 2.8 \text{ mm} (\sqrt{2}\text{Dt}_{\text{max}} \text{ for } \text{D} = 4 \text{ cm}^2/\text{s})$
Maximum charge attenuation	$e^{-(tmax/\tau)} \approx 1/150$ for $\tau = 2$ ms electron lifetime
Needed charge amplification	From 100 to 1000
Methods for amplification	Extraction to and amplification in gas phase
Possible solutions	Thin wires ($\phi \approx 30 \ \mu$ m) + pad readout, GEM, LEM,

Process system & equipment

- Filling speed (100 kton): 150 ton/day \rightarrow 2 years to fill, \approx 10 years to evaporate !!
- Initial LAr filling: decide most convenient approach: transport LAr and/or in situ cryogenic plant
- Tanker 5 W/m² heat input, continuous re-circulation (purity)
- Boiling-off volume at regime: 30 ton/day: refilling

Ongoing studies and initial R&D strategy

Engineering studies, dedicated test measurements, detector prototyping, simulations, physics performance studies in progress:

- **1)** Study of suitable charge extraction, amplification and imaging devices
- **2)** Understanding of charge collection under high pressure
- 3) Realization and test of a 5 m long detector column-like prototype
- 4) Study of LAr TPC prototypes immersed in a magnetic field
- 5) Study of large liquid underground storage tank, costing
- 6) Study of logistics, infrastructure and safety issues for underground sites
- 7) Physics studies and phenomenology

1) Electron extraction in LAr bi-phase

Electric Field GAr **EL** UV light e-l' O Ar⁺ LAr SC UV light

Particle produces excitation (Ar*)

and ionization (Ar⁺, e)

Both SC and EL can be detected by the same photo-detector

Scintillation SC is a result of direct excitation and recombination Electro-luminescence EL (proportional scintillation) is a result of electron acceleration in the gas

1) Amplification near wires à la MWPC

- Amplification in Ar 100% gas up to factor G≈100 is possible
- GARFIELD calculations in pure Ar 100%, T=87 K, p=1 atm
- Amplification near wires, signal dominated by ions
- Readout views: induced signal on (1) wires and (2) strips provide two perpendicular views

1) Amplification with Large Electron Multiplier (LEM)

- A large scale GEM (x10) made with ultra-low radioactivity materials (copper plated on virgin Teflon)
 - In-house fabrication using automatic micro-machining
 - Modest increase in V yields gain similar to GEM
 - Self-supporting, easy to mount in multi-layers
- Resistant to discharges (lower capacitance by segmentation)
 - Cu on PEEK under construction (zero out-gassing)

P. Jeanneret et al., NIM A 500 (2003) 133-143

Gas Electron Multiplier GEM (F. Sauli et al., CERN)

100x100 mm²

A gas electron multiplier (GEM) consists of a thin, metal-clad polymer foil, chemically pierced by a high density of holes. On application of a difference of potential between the two electrodes, electrons released by radiation in the gas on one side of the structure drift into the holes, multiply and transfer to a collection region.

LEM with pure Argon-100%

Detection of charge signal and scintillation light produced during amplification

400 x 400 mm²

Holes $\phi = 1 \text{ mm}$

Amplification with self-made LEMs

- •Fe source (5.9 keV γ), Argon 100%
- •Three LEM thicknesses: 1, 1.6 and 2.4 mm
- Varying pressures
- Room temperature

Raw charge spectrum

Gain and resolution: effect of LEM geometry

•Fe source (5.9 keV γ), Argon 100%

- •Three LEM thicknesses: 1, 1.6 and 2.4 mm
- Normal pressure and room temperature

Stable operation possible in pure argon

Gain for different gas pressures

•Fe source (5.9 keV γ), argon 100%

Room temperature

Gain for 1 mm lem, different pressures

Stable operation possible in pure argon

2) High-pressure drift properties in liquid Argon

• Future large tankers:

Hydrostatic pressure could be quite significant (3-4 atmosphere at the bottom of the tanker)

• Test of electron drift properties in high pressure liquid Argon

Important to understand the electron drift properties and imaging under high pressure

• Study in progress

- ✓ Prototype designed
- ✓ Parts being assembled at PSI

3) Long drift, extraction, amplification: test module

Long drift, extraction, amplification: delivery tubes

4) Test of liquid Argon imaging in B-field

- Small chamber in SINDRUM-I recycled magnet up to B=0.5T (230KW) given by PSI, Villigen
- Test program:
 - ➡ Check basic imaging in B-field
 - Measure traversing and stopping muons bending
 - ➡ Charge discrimination
 - Check Lorentz angle (α≈30mrad @ E=500 V/cm, B=0.5T)
- Results expected in 2004

Width 300 mm, height 150 mm, drift length 150 mm

5) Study of large underground storage tank

Work in progress: Underground storage, engineering issues, process system & equipment, civil engineering consulting, safety, cost & time

6) Location study: underground sites in Europe

Two different topologies envisioned for the site:

- 1. Hall access via highway tunnel tunnel (Fréjus laboratory project)
- 2. Deep mine-cavern with vertical access (CUPRUM mines, Polkowice-Sieroszowice)

- cooperation agreement: IN2P3/CNRS/DSM/CEA & INFN
- international laboratory for underground physics
- easy access
- safety issues (highway tunnel)
- · caverns have to be excavated

- mines by one of the largest world producers of Cu and Ag
- salt layer at ≈1000 m underground (dry)
- large caverns exist for a \approx 80000 m³ (100 kton LAr) detector
- geophysics under study
- access through vertical shaft

Feasibility of a large underground cavern

- Geophysical instabilities limit the size of the underground cavern
- Actual size limits depend on details of rock and depth and on the wished cavern geometry
- Contact with Mining and Metallurgy department (Krakow University) and with mining companies (A. Zalewska)
- Finite element analysis calculation for Polish mine (courtesy of Witold Pytel, CBPM "Cuprum" OBR, Wroclaw)

7) Physics simulation and phenomenology

- Explore both accelerator & non-accelerator physics
- Optimize physics in conjunction with different beams, energies and baseline options, ...

⇒e.g. Trying to see oscillations with beta-beams

Creation of an international "Argon-Net"

• The further developments of the LAr TPC technique, eventually finalized to the proposal and to the realization of actual experiments, could only be accomplished by an international community of colleagues able to identify and conduct the required local R&D work and to effectively contribute, with their own experience and ideas, to the achievement of ambitious global physics goals. In particular, this is true for a large 100 kton LAr TPC detector that would exploit next generation neutrino facilities and perform ultimate non-accelerator neutrino experiments.

• We are convinced that, given the technical and financial challenges of the envisioned projects, the creation of a Network of people and institutions willing to share the responsibility of the future R&D initiatives, of the experiment's design and to propose solutions to the still open questions is mandatory.

• The actions within the Network might include the organization of meetings and workshops where the different ideas could be confronted, the R&D work could be organized and the physics issues as well as possible experiments could be discussed. One can think of coherent actions towards laboratories, institutions and funding agencies to favor the mobility of researchers, to support R&D studies, and to promote the visibility of the activities and the dissemination of the results.

So far colleagues from 22 institutions have already expressed their Interest in joining Argon-Net, to act as 'nodes' of the network

Outlook

• Very large liquid Argon TPC will provide a rich physics programme, including both accelerator & non-accelerator aspects, as important as electroweak physics at colliders

• The liquid Argon TPC is a new and challenging technology.

- It is the fruit of many years of R&D effort conducted by the ICARUS collaboration.
- ► It was demonstrated to the 0.6 kton scale on the surface test in summer 2001
- Extrapolation from 0.6 to 100 kton is a big step
- It might require a 10% prototype (10 kton) cost comparable to a CNGS experiment
- ► R&D is on-going
- ► It would provide a qualitative & quantitative improvement in physics
- ➡ High statistics, precision physics will require a ≈100 ton detector in a neutrino beam (near site)
- Given the challenging aspect of the ideas reviewed in this talk:
 - Creation of international Argon-Net "for the further development of the Liquid Argon TPC and for its application to future experiments". Work in progress...