

DISCOVERY OF PULSED VERY HIGH ENERGY γ-RAYS FROM CRAB WITH THE MAGIC TELESCOPE USING A NEWLY DEVELOPPED SUM TRIGGER

Michael Rissi, ETH Institute for Particle Physics

CHIPP General Meeting, Lausanne, 2008

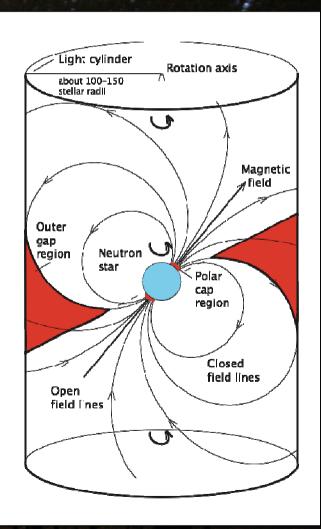
THE CRAB PULSAR

CHIPP Prize Award, 2008

In the center of the Crab Nebula
Rotating Neutron star, rotation frequency:
~30 Hz

Huge magnetic field at the order of $10^8T \rightarrow 10^8$ huge induced el. field.

Exact mechanism of γ-emission unknown

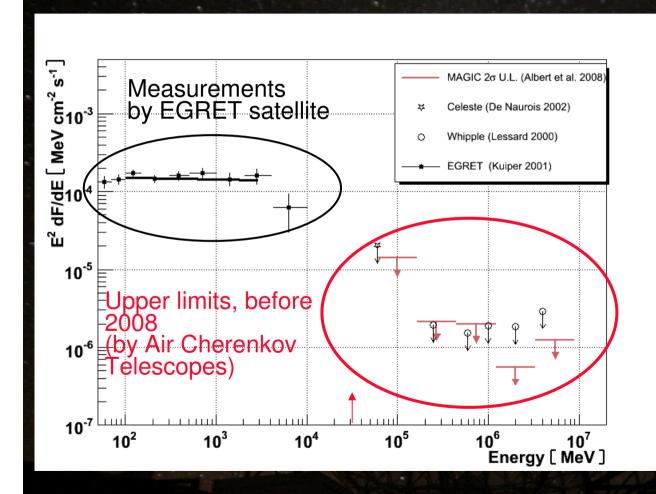

Polar cap model

Absorption of γ -rays via magnetic pair production: $\gamma B \rightarrow e^+e^ \rightarrow$ superexp. cutoff

Outer gap model

Absorption of γ -rays via photon-photon collisions: $\gamma_{\rm HE} \ \gamma_{\rm LE} \to {\rm e^+e^-}$

→ exp. cutoff at higher energy



CRAB PULSAR: ENERGY SPECTRUM before 2008

CHIPP Prize Award, 2008

No detection of pulsed VHE gamma rays from Crab before 2008.

There must be a steep turnover in the spectrum between 5 GeV and ~60 GeV!

(Albert et al, 2008: upper limit on cut off energy: <30GeV)

CHIPP Prize Award, 2008

MAGIC:

- Situated on the Canary Island of La Palma (2200m a.s.l.)
- Sensitivity: ~2% Crab in 50 hours of observation time.
- Present Standard Trigger threshold:55 GeV (for small zenith angles)
- **❖ Large mirror (17m diameter)**
- Highly sensitive PMT camera
- Design goal: measure gamma rays above 50 GeV, present analysis threshold ~80 GeV (for steady sources)

Michael Rissi, Institute for Particle Physics, ETH Zürich

THE CRAB PULSAR (STANDARD TRIGGER AND ANALYSIS)

CHIPP Prize Award, 2008

No detection from ground based γ -ray telescopes for more than 20 years.

No detection above 60 GeV with MAGIC.

Situation with standard trigger: 2.95 from Crab pulsar.

We need a lower trigger threshold to investigate pulsed γ-rays from Crab!

$$\phi(t) = v_0 \cdot (t - T_0) + \frac{1}{2} \dot{v}_0 \cdot (t - T_0)^2 + \dots$$

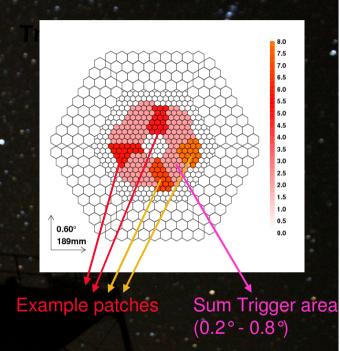
MAGIC TRIGGER SCHEMES: STANDARD and the NEW SUM TRIGGER

Standard Trigger

Digital trigger logic:
If the signal in each of 4 neighboring
PMTs is above discriminator threshold, the event is triggered.

New Sum Trigger Analog trigger logic: if the summed signal from NPMTs is above discriminator threshold, the event is triggered.

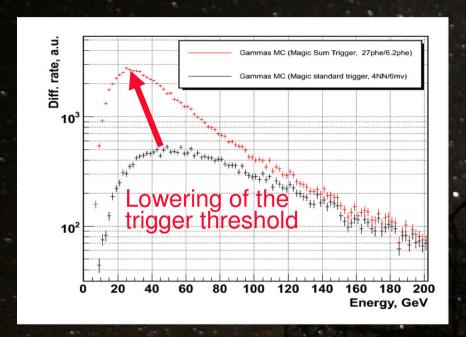
Michael Rissi, Institute for Particle Physics, ETH Zürich

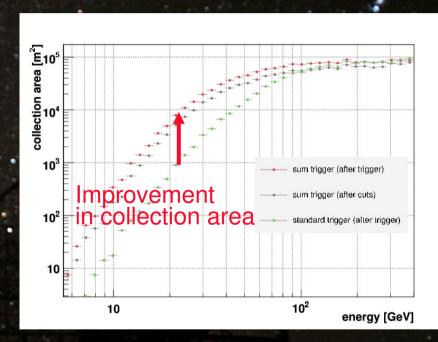


CHIPP Prize Award, 2008

Features:

- Analog sum improves signal/noise ratio.
 Within one trigger patch: Free choice of pattern, no bias for shower shape
- Also small signals contribute to the trigger signal
- Needs precise timing adjustment (~2ns)


The patch size and shapes, the discriminator level, the optimal signal bandwidth and other parameters were optimized by extended Monte Carlo simulations.



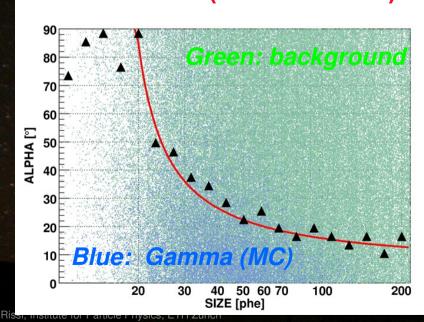
PERFORMANCE OF THE SUM TRIGGER

ETH Institute for Particle Physics

CHIPP Prize Award, 2008

Trigger threshold lowered from 55.GeV to 25 GeV

Collection Area increased at 25 GeV by about a factor 8.

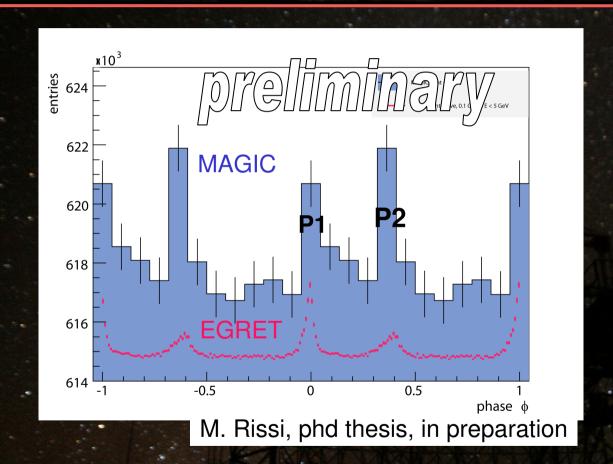


New software was developed, adjusted to the analysis of γ -ray showers between 20-50 GeV

To reduce the background, a parameterized cut in the image parameter **ALPHA** was found by comparing Monte Carlo γ 's and OFF data (background).

Cut in ALPHA (max. Q-factor)

The energy was estimated using the parameter SIZE (\sim number of Cherenkov photons produced by the γ -ray shower)


Energy resolution: 45% @ 40 GeV

DISCOVERY OF PULSED GAMMA RAYS FROM CRAB

CHIPP Prize Award, 2008

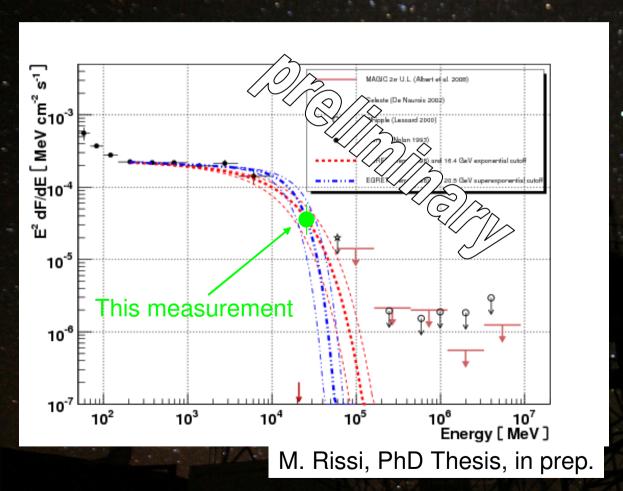
Discovery with a significance of 6.2σ (assuming the EGRET signal region)

22.3 hours of observation time.

Energy threshold: 25 GeV.

Result confirmed by two additional independent analyses

(N. Otte, M. Lopez)

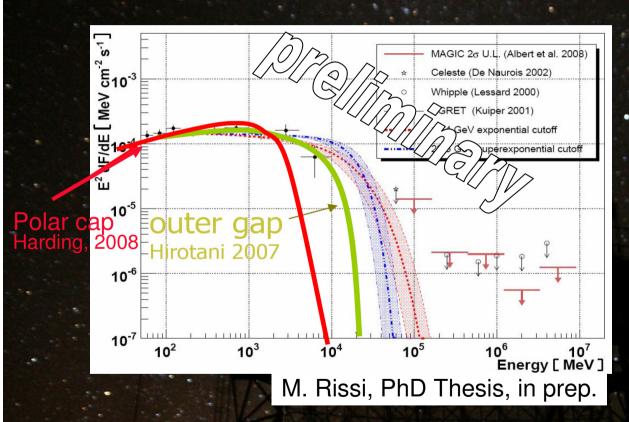


MAGIO

CHIPP Prize Award, 2008

Cut off energies:

(17.7 +/- 2stat+/- 5syst) GeV (exponential, red)


(23.2 +/- 2stat.+/- 5syst) GeV (super exp., blue)

DISCUSSION: CUT OFF AND SPECTRUM

CHIPP Prize Award, 2008

We can compute the minimal emission height:

$$\varepsilon_{\text{max}} \approx 0.4 \sqrt{P \frac{r}{R_0}} \max \left\{ 1, \frac{0.1 B_{crit}}{B_0} \left(\frac{r}{R_0} \right)^3 \right\} GeV$$

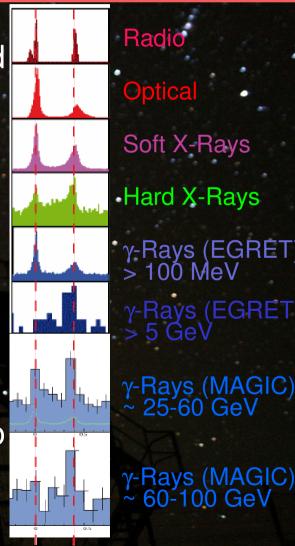
(Baring et al, 2001)

Assuming a magnetic field of 3.8x10⁸T we can put a lower limit on the distance to the surface of the neutron star at

4 stellar radii

⇒ classical polar cap model is ruled out.

CONCLUSION


CHIPP Prize Award, 2008

The sum trigger has a low energy threshold of ~25 GeV, and an energy resolution of ~45% @ 40 GeV.

The first detection of pulsed emission from a pulsar with a Cherenkov Telescope First detection of the cut off of pulsar-emission.

Measurement favors γ -ray emission from within the outer magnetosphere.

Peak position P1 and P2 in the pulse diagram does not change, from Radio up to HE γ -rays!

Thank you very much for the CHIPP prize!

- Acknowledgement goes to:
 - IPP, ETH Zürich, especially Felicitas Pauss and Adrian Biland
 - Thomas Schweizer, Maxim Shayduk, Nepomuk Otte, Marcos Lopez, Eckart Lorenz and Razmick Mirzoyan from the sum trigger and analysis group in MAGIC.
 - The MAGIC collaboration for letting us installing the new trigger and providing us with knowledge