

Search for Dark Matter in Missing-Energy Final States with an Energetic Jet or Top Quarks with the ATLAS Detector

Johanna Gramling Université de Genève (now: UC Irvine)

http://scienceblogs.com/startswithabang/files/2012/10/bigbang.jpeg

http://scienceblogs.com/startswithabang/files/2012/10/bigbang.jpeg

http://scienceblogs.com/startswithabang/files/2012/10/bigbang.jpeg

Cosmological scales: Large-scale structure formation only successfully described with dark ma

successfully described with dark matter component

ensing shows displacement er (red) and gravitational

Chandra X-Ray Observatory: 1E 0657-56

http://scienceblogs.com/startswithabang/files/2012/10/bigbang.jpeg

SPS and ÖPG Joint Annual Meeting 2017, Johanna Gramling

Looking for dark matter...

Looking for dark matter...

... at a collider

- No DM interaction with the detector \rightarrow missing E_T signatures
 - Initial-state radiation (ISR) (can be jets, photons, W, Z, ...)
 - Associated DM production with heavy quarks
 - Direct coupling to DM (e.g. mono-Higgs)

The ATLAS Detector

The ATLAS Detector

Monojet Analysis

Analysis Overview

Monojet is generally the most sensitive ISR channel (highest cross section)

 Selection based on large E^{Tmiss}, high-p^T jet(s) from initial state radiation and veto on other objects, such as leptons

leading jet p_T > 120 GeV

veto on leptons and isolated tracks

Analysis Overview

Monojet is generally the most sensitive ISR channel (highest cross section)

Selection based on large E_T^{miss} , high-p_T jet(s) from initial state radiation and veto on other ۲ objects, such as leptons

leading jet $p_T > 120 \text{ GeV}$

veto on leptons and isolated tracks

Challenge: estimate irreducible background from $Z(\rightarrow \nu\nu)$ + jets

μ

Z(vv)+jet

Improvements

Veto on isolated tracks

- Reduces backgrounds with missed leptons and hadronically decaying taus
- Performance: efficiency ~ 97% for DM signal and $Z(\rightarrow \nu\nu)$, 50 - 70% for other backgrounds, systematic effect on background estimate < 1%

First dedicated optimisation of sensitivity to DM signals

- signal events prefer higher event scale, therefore number of jets is higher than in backgrounds
- As a consequence, leading jet p_T and E_T^{miss} are less balanced
- → inclusive number of jets & asymmetric jet p_T/E_T^{miss} cuts

Results

largest deviation: 1.7 σ in highest-E_T^{miss} signal region

Interpretation

EFT validity:

G. Busoni, A. De Simone, JG, E. Morgante, A. Riotto

JCAP 1406:060, 2014

Simplified Model Study:

A.J. Brennan, M.F. McDonald, JG, T.D. Jacques

JHEP05(2016)112

DM Effective Field Theory

LHC results were interpreted in effective field theory (EFT) models

- "Ignore" parts of model that should not affect observations
 → as general as possible
 - Justified only, if energy scale well below new physics ($Q_{trans} \ll m_{Med}$)

DM Effective Field Theory

LHC results were interpreted in effective field theory (EFT) models

- "Ignore" parts of model that should not affect observations
 → as general as possible
 - Justified only, if energy scale well below new physics (Q_{trans} « m_{Med})

Simplified Models

Need to move to simplified models

 Construct simple model with DM, a mediator and one interaction: more complete, but less general → more parameters

Reinterpretation of monojet, mono-Z($\rightarrow \ell \ell$) and mono-W/Z($\rightarrow qq$) analyses performed within 3 simplified models

Conclusions: searches could profit from dedicated optimisation for simplified models, especially in low E_T^{miss} region

JHEP05(2016)112

DM

DM

SM

SM

How to do comparisons?

How to do comparisons?

How to do comparisons?

Lots of progress in DM@LHC community: simplified models well established → comparisons have less question marks now

Dark Matter + top quarks

ATLAS-CONF-2016-050

Theoretical motivation: Yukawa-like couplings between spin-0 mediator and SM quarks: stronger couplings to heavier quarks

- Searches for stops and DM+tt share the same final state: tt + E^{Tmiss} → analyses performed together
 - ATLAS stop 0L, 1L and 2L results all had DM interpretation (*)
 - I worked on 1L channel → presented in the following

(*) Also result on DM + bb was released for ICHEP

- Searches for stops and DM+tt share the same final state: tt + E^{miss} → analyses performed together
 - ATLAS stop 0L, 1L and 2L results all had DM interpretation (*)
 - I worked on 1L channel → presented in the following

4 jets (thereof 2 b-jets), E_T^{miss} , 1 lepton (e or μ)

(*) Also result on DM + bb was released for ICHEP

Discriminating Variables

• Especially useful for DM regions, selects specific event topologies:

 $\Delta \phi_{\min}(E_T^{miss}, jets)$

 Transverse mass m_T, reconstructs mass of leptonically decaying W boson:

$$m_{\mathrm{T}i}^2 = \left(\sqrt{p_{\mathrm{T}i}^2 + m_{p_i}^2} + \sqrt{q_{\mathrm{T}i}^2 + m_{q_i}^2}\right)^2 - \left(\vec{p}_{\mathrm{T}i} + \vec{q}_{\mathrm{T}i}\right)^2$$

DM Signal Regions

DM_low

DM_high

Natural coupling $(g \sim 1)$, low-mass mediator ($M_{med} = 100 \text{ GeV}$)

most important variables:

 $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}, \mathit{\Delta} \phi_{\mathsf{min}}$

largest backgrounds:

ttbar (2L, 1L1*τ*) (33%), W+jets (31%), tt+Z (23%)

Maximal coupling (g~3.5), high-mass mediator ($M_{med} = 350 \text{ GeV}$)

most important variables:

 E_T^{miss} , $\Delta \phi_{min}$ and m_T

largest backgrounds: ttbar (2L, 1L1 τ) (31%), tt+Z (30%)

Background Estimation

- construct backgroundenriched control region (CR)
- extrapolate over few key variables, constrain MC normalisation in signal region (SR)
- check extrapolation in validation region (VR)

- construct background-• enriched control region (CR)
- extrapolate over few key • variables, constrain MC normalisation in signal region (SR)
- check extrapolation in validation region (VR)

- construct background-• enriched control region (CR)
- extrapolate over few key • variables, constrain MC normalisation in signal region (SR)
- check extrapolation in validation region (VR)

ttbar CRs/VRs

- construct background-• enriched control region (CR)
- extrapolate over few key variables, constrain MC normalisation in signal region (SR)
- check extrapolation in validation region (VR)

am_{T2} [GeV] Single top CR STCR SR $N_{b-jets} \ge 2$ 200 $N_{b-jets} \ge 1$ 175 TCR TVR **Non-canonical VRs** $N_{b-jets} \ge 1$ 100 30 120 90 m_T [GeV] WCR **WVR** WVR-tail 100 $N_{b-jets} = 0$ Nγ≥ ttbar CRs/VRs N_{b-jets} ≥ 1 0 100 W+jets CRs/VRs

- construct background-• enriched control region (CR)
- extrapolate over few key • variables, constrain MC normalisation in signal region (SR)
- check extrapolation in validation region (VR)

- construct background-• enriched control region (CR)
- extrapolate over few key variables, constrain MC normalisation in signal region (SR)
- check extrapolation in validation region (VR)

am₁₂ [GeV Single top CR STCR SR $N_{b-jets} \ge 2$ 200 $N_{b-jets} \ge 1$ 175 TCR TVR **Non-canonical VRs** $N_{b-jets} \ge 1$ 100 30 120 90 m_T [GeV] WCR **WVR** WVR-tail 100 $N_{b-jets} = 0$ $N_{\gamma} \geq 1$ ttbar CRs/VRs N_{b-jets} ≥ 1 0 100 **tt+***γ* **CR for tt+Z:** require photon, W+jets CRs/VRs treat as invisible for E_T^{miss}, m_T, H_T^{miss}_{sig}

Use simultaneous fit of all CRs to obtain final results

Results

Reasonable agreement with prediction in validation regions

Excess in 3 signal regions (regions are not orthogonal)

• Largest in *DM_low*: 3.3 σ

Distributions in DM SRs

JNIVERSITI

DE GENÈVE

Interpretation

Use simplified model of DM pair production

Present limits for $g = g_{\chi} = g_q = 3.5 \rightarrow maximal coupling that still (kind of) makes sense$

- Exclusion contour for g=1 not meaningful (yet)
- On-shell/off-shell features visible in m_{χ} M_{med} plane

Updated Results

Monojet

DM + tops

ATLAS-CONF-2017-037

Conclusions

Effective field theories of dark matter production not suited for interpreting LHC results → simplified models necessary

Monojet search improved by dark matter optimisation and track veto

Dark matter + tops analysis sensitive to (pseudo-) scalar mediators

Conclusions

Effective field theories of dark matter production not suited for interpreting LHC results → simplified models necessary

Monojet search improved by dark matter optimisation and track veto

Dark matter + tops analysis sensitive to (pseudo-) scalar mediators

Interesting times ahead!

more data to come, better statistics allows to improve analyses further test theory ideas beyond "simple" WIMP picture: complex dark sectors → more complex and challenging signatures

Conclusions

Effective field theories of dark matter production not suited for interpreting LHC results → simplified models necessary

Monojet search improved by dark matter optimisation and track veto

Dark matter + tops analysis sensitive to (pseudo-) scalar mediators

Interesting times ahead!

more data to come, better statistics allows to improve analyses further

test theory ideas beyond "simple" WIMP picture: complex dark sectors \rightarrow more complex and challenging signatures

LHC is an important and interesting place to look for dark matter: Not one experiment, not one search strategy, not even one discipline of physics alone can hope to pin down properties of dark matter, which makes it both challenging and interesting

THANK YOU!

BACKUP

Veto on Isolated Tracks

Reduces backgrounds containing missed leptons and hadronically decaying tau leptons

- Definition: veto events containing a track with no other tracks above 3 GeV in its vicinity (cone of 0.4)
- **Performance:** efficiency ~ 97% for dark matter signal and $Z(\rightarrow \nu\nu)$, 50 70% for other backgrounds

→ improvement of "S/(S+B)" ~ 7-10%

- Validation: efficiency independent of event properties like E_T^{miss}, jet p_T, #vertices
 MC modelling excellent for leptons and non-leptonic part of event as well as in low-E_T^{miss} region
 - systematic effect on background estimate < 1%

Optimisation for DM Signals

First dedicated optimisation of sensitivity to DM signals

- Signal benchmarks leading to different E^{™iss} spectra were considered ("D5", "D11")
- Optimisation revealed: signal events prefer higher event scale, therefore sum of jet p_T's and number of jets is higher than in backgrounds
- As a consequence, leading jet p_T and E_T^{miss} are less balanced

inclusive number of jets & asymmetric jet p_T/E_T^{miss} cuts

The LHC

Currently the world's most powerful particle accelerator

- Can collide protons at centre-of-mass energies of up to 14 TeV → "discovery machine"
- Data from collision energies of 8 TeV (2012) and 13 TeV (2015/2016) were analysed

Monojet Selection

Selection criteria										
Pre- selection	Primary vertex $E_{\rm T}^{\rm miss} > 150 \text{ GeV}$ Jet quality requirements At least one jet with $p_{\rm T} > 30 \text{ GeV}$ and $ \eta < 4.5$ Lepton and isolated track vetoes									
Monojet selection	Leading jet $p_{\rm T} > 120$ GeV and $ \eta < 2.0$ Leading jet $p_{\rm T}/E_{\rm T}^{\rm miss} > 0.5$ $\Delta \phi({\rm jet}, \vec{p}_{\rm T}^{\rm miss}) > 1.0$									
Signal regions	$E_{\rm T}^{\rm miss}$ [GeV]	SR1 > 150	SR2 > 200	SR3 > 250	SR4 > 300	SR5 > 350	SR6 > 400	SR7 > 500	SR8 > 600	SR9 > 700

Monojets: EW background estimate

$$N_{\rm SR}^{W(\to\mu\nu)} = \frac{(N_{W(\to\mu\nu),\rm CR}^{\rm data} - N_{W(\to\mu\nu),\rm CR}^{\rm non-W/Z})}{N_{W(\to\mu\nu),\rm CR}^{\rm MC}} \times N_{\rm SR}^{\rm MC(W(\to\mu\nu))} \times \xi_{\ell} \times \xi_{\rm trg} \times \xi_{\ell}^{\rm veto}$$

Monojets: EW background estimate

$$N_{\rm SR}^{W(\to\mu\nu)} = \frac{(N_{W(\to\mu\nu),\rm CR}^{\rm data} - N_{W(\to\mu\nu),\rm CR}^{\rm non-W/Z})}{N_{W(\to\mu\nu),\rm CR}^{\rm MC}} \times N_{\rm SR}^{\rm MC(W(\to\mu\nu))} \times \xi_{\ell} \times \xi_{\rm trg} \times \xi_{\ell}^{\rm veto}$$

$$N_{\text{signal}}^{Z(\rightarrow\nu\bar{\nu})} = \frac{(N_{W(\rightarrow\mu\nu),\text{control}}^{\text{data}} - N_{W(\rightarrow\mu\nu),\text{control}}^{\text{non}-W/Z})}{N_{W(\rightarrow\mu\nu),\text{control}}^{\text{MC}}} \times N_{\text{signal}}^{\text{MC}(Z(\rightarrow\nu\bar{\nu}))} \times \xi_{\ell} \times \xi_{\text{trg}}$$

Monojets: Results

Signal Region	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8	SR9
Observed events	364378	123228	44715	18020	7988	3813	1028	318	126
SM expectation	372100 ± 9900	126000 ± 2900	45300 ± 1100	18000 ± 500	8300 ± 300	4000 ± 160	1030 ± 60	310 ± 30	97 ± 14
$Z(\rightarrow \nu \bar{\nu})$	217800 ± 3900	80000 ± 1700	30000 ± 800	12800 ± 410	6000 ± 240	3000 ± 150	740 ± 60	240 ± 30	71 ± 13
$W(\rightarrow \tau \nu)$	79300 ± 3300	24000 ± 1200	7700 ± 500	2800 ± 200	1200 ± 110	540 ± 60	130 ± 20	34 ± 8	11 ± 3
$W(\rightarrow e\nu)$	23500 ± 1700	7100 ± 560	2400 ± 200	880 ± 80	370 ± 40	170 ± 20	43 ± 7	9 ± 3	3 ± 1
$W(\rightarrow \mu\nu)$	28300 ± 1600	8200 ± 500	2500 ± 200	850 ± 80	330 ± 40	140 ± 20	35 ± 6	10 ± 2	2 ± 1
$Z/\gamma^*(\rightarrow \mu^+\mu^-)$	530 ± 220	97 ± 42	19 ± 8	7 ± 3	4 ± 2	3 ± 1	2 ± 1	1 ± 1	1 ± 1
$Z/\gamma^*(\rightarrow \tau^+\tau^-)$	780 ± 320	190 ± 80	45 ± 19	14 ± 6	5 ± 2	2 ± 1	0 ± 0	0 ± 0	0 ± 0
$t\bar{t}$, single top	6900 ± 1400	2300 ± 500	700 ± 160	200 ± 70	80 ± 40	30 ± 20	7 ± 7	1 ± 1	0 ± 0
Dibosons	8000 ± 1700	3500 ± 800	1500 ± 400	690 ± 200	350 ± 120	183 ± 70	65 ± 35	23 ± 16	8 ± 7
Multijets	6500 ± 6500	800 ± 800	200 ± 200	44 ± 44	15 ± 15	6 ± 6	1 ± 1	0 ± 0	0 ± 0

2:7% for SR1 and 6.2% for SR7 to 14% for SR9

Monojets: Systematic Uncertainties

ATLAS

	Background	
	Jet energy scale and resolution	0.2-3%
Experimental	$E_{\rm T}^{\rm miss}$ reconstruction	0.2-1%
Experimental	Lepton properties	1.4-2%
	Trigger efficiency	0.1% (SR1)
	W/Z modelling	1-3%
Theoretical	Top modelling	0.7-4%
	Diboson modelling	0.7-3%
Oth	Multijet estimate	2% (SR1), 0.7% (SR2)
Otner	Multijet and γ +jets in $W(\rightarrow e\nu)$ CR	1% (SR9)
	Signal	
	Jet energy scale and resolution,	1-10%
	$E_{\rm T}^{\rm miss}$ reconstruction	1 10/0
	Beam energy	3%
Acceptance \times Efficiency	Luminosity	2.8%
	PDF choice	5-29%
	Renormalisation/factorisation scales	3%
	Parton matching scale	5%
	Beam energy	2-9%
	Penermalization /factorization scales	2-17% (D1, D5, D9),
G	Renormansation/ factorisation scales	40-46% (C5, D11)
Cross-section		19-70% (D1, D11, C5),
	PDF choice	5-36% (D5, D9)
		increasing with DM mass

Monojets: Systematic Uncertainties

Exemplarily for one estimate: $Z(\rightarrow \nu\nu)$ from $W(\rightarrow \mu\nu)$

• combination reduces uncertainties, considers correlations

	Znunu (Wmunu)								
Lower bound on $E_{\rm T}^{\rm miss}$ (GeV)	150	200	250	300	350	400	500	600	700
dataStat	0.295	0.499	0.817	1.26	1.871	2.673	4.999	9.214	16.074
mcStat	0.215	0.3	0.409	0.483	0.676	0.941	1.668	3.263	5.341
JER	0.341	0.062	0.285	0.68	0.894	0.632	0.37	0.226	1.033
JESGlobal	1.482	1.917	2.003	1.67	2.284	1.398	2.017	4.959	4.899
MET	0.825	0.831	0.526	0.607	0.532	0.765	1.871	2.155	2.9
Тор	1.625	2.1	2.442	3.077	4.609	4.767	6.721	7.895	4.423
VV	1.452	2.122	2.871	3.61	4.576	5.43	7.114	9.174	9.931
other CR bgd	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lepton	0.515	0.564	0.63	0.589	0.572	0.554	1.058	0.846	2.275
trigger SF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NČB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
theory	1.273	1.276	1.281	1.299	2.17	2.166	3.152	5.079	6.053

EFT Validity Measure

Use ratio of cross section with validity condition imposed over total cross section to quantify validity

$$R_{\Lambda}^{\text{tot}} \equiv \frac{\sigma|_{Q_{\text{tr}} < \Lambda}}{\sigma} = \frac{\int_{p_{\text{T}}^{\text{max}}}^{p_{\text{T}}^{\text{max}}} \mathrm{d}p_{\text{T}} \int_{\eta_{min}}^{\eta_{max}} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}p_{\text{T}}\mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}{\int_{p_{\text{T}}^{\text{min}}}^{p_{\text{T}}^{\text{max}}} \mathrm{d}p_{\text{T}} \int_{\eta_{min}}^{\eta_{max}} \mathrm{d}\eta \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}p_{\text{T}}\mathrm{d}\eta}}$$

SiMs: Minimal Width

Early SiMs interpretations used fixed width for mediator

• e.g. $M_{med}/3 \rightarrow very$ large width and $M_{med}/8\pi \rightarrow minimal$ width

In principle, the width is fixed by masses, couplings and decay channels

• Calculate it for each point:

$$\Gamma_{sV} = \frac{g_{\chi}^2 M}{12\pi} \left(1 + \frac{2m_{\chi}^2}{M^2} \right) \left(1 - \frac{4m_{\chi}^2}{M^2} \right)^{\frac{1}{2}} \Theta(M - 2m_{\chi}) + \sum_q \frac{g_q^2 M}{4\pi} \left(1 + \frac{2m_q^2}{M^2} \right) \left(1 - \frac{4m_q^2}{M^2} \right)^{\frac{1}{2}} \Theta(M - 2m_q)$$

SiMs: Width Effects

SiMs: Approximations

Assume that kinematics is not altered by coupling changes

• Simplifies limit calculation - stick to regime in which this is valid ($\Gamma/M_{\text{med}} < 0.5)$

$$\sigma \propto \begin{cases} g_q^2 g_\chi^2 / \Gamma & \text{if } M_{\text{med}} \ge 2m_{\text{DM}} \\ g_q^2 g_\chi^2 & \text{if } M_{\text{med}} < 2m_{\text{DM}} \end{cases}$$

Generator assumes Breit-Wigner propagator

- Not accurate for large widths
- Not accurate for $m_{DM} >> M_{med}$
- We apply a rescaling procedure to correct for it

SiMs: Results

SiMs: Results

SiMs: Model Comparison

(b) sV model, $g_{\chi}/g_q = 1$, mono-Z channel.

(e) sA model, $g_{\chi}/g_q = 1$, mono-Z channel.

(a) tS model, mono-Z channel.

SiMs: Channel Comparison

(d) sA model, $g_{\chi}/g_q = 1$, mono-jet channel.

(e) sA model, $g_{\chi}/g_q = 1$, mono-Z channel. (f) sA model, $g_{\chi}/g_q = 1$, mono-W/Z channel.

Stop 1L: Object definitions

		Over	rlap r	emova								Jets
Object 1	е	e		μ	l		γ	γ	τ			Baseline
$\Delta R <$	μ 0.01	J 0.2		J 0.2	J min $(0.4, 0.04 + -10)$		$\frac{1}{2}$	e).1	e 0.1		<i>р</i> т	> 20 GeV
Condition	calo-tagged μ	j not b-tagged	j not b-	tagged and	-	$p_{\rm T}^{\ell}/{\rm GeV}$		-	-			Signal
			$\left(n_{\text{track}}^{j} < 3\right)$	or $\frac{p_T^{\mu}}{p_T^J} > 0.7$							Рт	> 25 GeV
Precedence	е	e		μ	j		γ	е	е	н	$ \eta $	< 2.5
											JVT	0.59 for $ \eta < 2.4$ and $p_{\rm T} < 60 {\rm GeV}$
												b-jets
\frown	Electi	rons		\square	Mu	ions					<i>p</i> τ η Ιντ	> 20 GeV < 2.5 0.59 for $ n < 2.4$ and $p_T < 60 \text{ GeV}$
	Base	line	_		Bas	seline					MV2c10	$> 0.6459 (\varepsilon_b = 76.97\%)$
ID $E_{\rm T}$ $ n^{\rm cluster} $		VeryLooseL > 7 GeV < 2.47	н	$egin{array}{c} \mathrm{ID} \ p_\mathrm{T} \ \eta \end{array}$		Loc > 60 < 2	ose GeV 2.7					
	Sigr	nal	_		Si	gnal				1		large-R Jets
ID Fr		oseAndBLay	erLH	ID PT		Loc >25	ose GeV			:	reclu radiu	stered from signal jets s parameter optimised to
Isolation		LooseTrackO	nlv	Isolat	ion	LooseTr	ackO	nly		L	R=1.	2 (1.0) for tN high (bCbv)
d_0 signific	cance	< 5		d_0 sig	gnificance	<	3	•		•	"trimr	ming": drop small-R iets
$z_0\sin(\theta)$		< 0.5 mm		$z_0 \sin$	(θ)	< 0.5	mm	l	J		with p	o⊤ < 5% of large-R jet p⊤

Stop 1L: Trigger

Choice between single-lepton and E_T^{miss} triggers

 went for E_T^{miss}: no significant gain in efficiency when including lepton triggers

Iowest value of E_T^{miss}: 200 GeV (in CRs)

triggers not fully efficient

sufficiently good MC modelling of turn-on, also in 0b/1b selections

xe80_tc_lcw for 2015 data and xe100_mht for 2016 data

Stop 1L: Signal Region Overview

W

stop \rightarrow top + Neutralino (tN):

- object p_Ts dependent on mass splitting → look at intermediate ("tN_med") and large ("tN_high") mass splitting, also keep Moriond "SR1" to check excess
- make use of top reconstruction techniques: resolved or within large-R jets

stop → b + Chargino (bC)

- m(𝑥[±]) = 2 m(𝑥⁰) theoretically motivated, resulting in high-p_T (b-)jets ("bC2x_diag", "bC2x_med")
- include also region with small mass-splitting between stop and Chargino \rightarrow soft b-jets are not reconstructed, use b-veto ("bCbv")

DM+tt

- DM production associated with tops well motivated for Yukawa-like couplings of (pseudo-)scalar mediator (low m_{Med}: "DM_low", high m_{Med}: "DM_high")
- final state similar to tt+Z(inv)

g

Stop 1L: Discriminating Variables

"stransverse mass" m_{T2} : $m_{T2} \equiv \min_{\vec{q}_{Ta} + \vec{q}_{Tb} = \vec{p}_{T}^{\text{miss}}} \{ \max(m_{Ta}, m_{Tb}) \},$

- not used directly, but its modified versions that try to account for missing objects in the decay chains: PPP
 - **am_{T2}:** targeting ttbar (2L) background, where one lepton is undetected

m_{T2} τ : reject ttbar (1L1 τ) backgrounds, use reconstructed hadronic τ candidates in calculation

Stop 1L: Discriminating Variables

Reconstruction of hadronic and leptonic top candidates via χ^2 procedure

 E_T^{miss} perpendicular to leptonic top was found to perform well

 Significance of missing hadronic transverse energy H_T, H_T^{miss}sig (with scale M=100 GeV), protects from multijet background:

$$H_{\rm T, sig}^{\rm miss} = \frac{|\vec{H}_{\rm T}^{\rm miss}| - M}{\sigma_{|\vec{H}_{\rm T}^{\rm miss}|}}$$

DM: SR and CR overview

	Common event se	election for DM				
Trigger	$E_{\rm T}^{\rm miss}$ trigger					
Lepton	exactly one sign	nal lepton (e, μ) , no a	dditional baseline leptons			
Jets	at least four sig	gnal jets, and $ \Delta \phi(\text{jet}_i) $	$ \vec{p}_{\rm T}^{\rm miss} > 0.4 \text{ for } i \in \{1, 2\}$			
Hadronic τ veto	veto events wit	h a hadronic τ decay	and $m_{\mathrm{T2}}^{\tau} < 80 \mathrm{GeV}$			
Variable	DM_low	TCR / WCR	STCR			
≥ 4 jets with $p_{\rm T} > [{\rm GeV}]$	$(60 \ 60 \ 40 \ 25)$	$(60 \ 60 \ 40 \ 25)$	$(60 \ 60 \ 40 \ 25)$			
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 200 / > 230	> 200			
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 8	> 8			
$m_{\rm T}$ [GeV]	> 120	[30, 90]	[30, 120]			
am_{T2} [GeV]	> 140	[100, 200] / > 100	> 200			
$\min(\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i)) \ (i \in \{1-4\})$	> 1.4	> 1.4	> 1.4			
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	> 0.8	> 0.8	_			
$\Delta R(b_1, b_2)$	_	_	> 1.8			
Number of <i>b</i> -tags	≥ 1	$\geq 1 / = 0$	≥ 2			
Variable	DM_high	TCR / WCR	STCR			
≥ 4 jets with $p_{\rm T} > [{\rm GeV}]$	$(50 \ 50 \ 50 \ 25)$	$(50 \ 50 \ 50 \ 25)$	$(50 \ 50 \ 50 \ 25)$			
$E_{\rm T}^{\rm miss}$ [GeV]	> 330	> 300 / > 330	> 250			
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 9.5	> 9.5	> 5			
$m_{\rm T}$ [GeV]	> 220	[30, 90]	[30, 120]			
am_{T2} [GeV]	> 170	[100, 200] / > 100	> 200			
$\min(\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i)) \ (i \in \{1-4\})$	> 0.8	> 0.8	> 0.8			
$\Delta R(b_1, b_2)$	-	_	> 1.2			
Number of <i>b</i> -tags	≥ 1	$\geq 1 / = 0$	≥ 2			

Results

Signal region	SR1	tN_high	$bC2x_diag$	$bC2x_med$	bCbv	DM_low	DM_high
Observed	37	5	37	14	7	35	21
Total background	24 ± 3	3.8 ± 0.8	22 ± 3	13 ± 2	7.4 ± 1.8	17 ± 2	15 ± 2
$tar{t}$	8.4 ± 1.9	0.60 ± 0.27	6.5 ± 1.5	4.3 ± 1.0	0.26 ± 0.18	4.2 ± 1.3	3.3 ± 0.8
W+jets	2.5 ± 1.1	0.15 ± 0.38	1.2 ± 0.5	0.63 ± 0.29	5.4 ± 1.8	3.1 ± 1.5	3.4 ± 1.4
Single top	3.1 ± 1.5	0.57 ± 0.44	5.3 ± 1.8	5.1 ± 1.6	0.24 ± 0.23	1.9 ± 0.9	1.3 ± 0.8
$t\bar{t} + V$	7.9 ± 1.6	1.6 ± 0.4	8.3 ± 1.7	2.7 ± 0.7	0.12 ± 0.03	6.4 ± 1.4	5.5 ± 1.1
Diboson	1.2 ± 0.4	0.61 ± 0.26	0.45 ± 0.17	0.42 ± 0.20	1.1 ± 0.4	1.5 ± 0.6	1.4 ± 0.5
Z+jets	0.59 ± 0.54	0.03 ± 0.03	0.32 ± 0.29	0.08 ± 0.08	0.22 ± 0.20	0.16 ± 0.14	0.47 ± 0.44
$t\bar{t}$ NF	1.03 ± 0.07	1.06 ± 0.15	0.89 ± 0.10	0.95 ± 0.12	0.73 ± 0.22	0.90 ± 0.17	1.01 ± 0.13
W+jets NF	0.76 ± 0.08	0.78 ± 0.08	0.87 ± 0.07	0.85 ± 0.06	0.97 ± 0.12	0.94 ± 0.13	0.91 ± 0.07
Single top NF	1.07 ± 0.30	1.30 ± 0.45	1.26 ± 0.31	0.97 ± 0.28	-	1.36 ± 0.36	1.02 ± 0.32
$t\bar{t} + W/Z$ NF	1.43 ± 0.21	1.39 ± 0.22	1.40 ± 0.21	1.30 ± 0.23	—	1.47 ± 0.22	1.42 ± 0.21
$p_0 (\sigma)$	0.012 (2.2)	0.26(0.6)	0.004(2.6)	0.40(0.3)	0.50 (0)	0.0004(3.3)	0.09(1.3)
$N_{\rm non-SM}^{\rm limit}$ exp. (95% CL)	$12.9^{+5.5}_{-3.8}$	$5.5^{+2.8}_{-1.1}$	$12.4^{+5.4}_{-3.7}$	$9.0^{+4.2}_{-2.7}$	$7.3^{+3.5}_{-2.2}$	$11.5^{+5.0}_{-3.4}$	$9.9^{+4.6}_{-2.9}$
$N_{\rm non-SM}^{\rm limit}$ obs. (95% CL)	26.0	7.2	27.5	9.9	7.2	28.3	15.6

Stop 1L: Systematics

Experimental Systematic Uncertainties				
JES	4-15%			
JER	0-9%			
b-tagging	0-6%			
E _T ^{miss} TST	0-3%			
leptons	small			
photons	small			
luminosity	small			
Theoretical Systematic Uncertainties				
ttbar	17-32%			
Wt	14-68%			
Wjets	40%			
Dibosons	20-30%			
SUSY	13-23%			
DM	5% (only acc)			

Example: Theory Systematics

Listed for ttbar sample

source	SR1	tN_med	tN_high	bC2x_diag	bC2x_med	bCbv	DM_high	DM_low
	Uncertainties on TF to SR [%]							
Hard Scatter	15.1 ± 2.2	21.0 ± 2.6	17.1 ± 4.9	12.1 ± 1.9	9.5 ± 1.7	22.6 ± 1.4	15.4 ± 2.6	14.6 ± 2.3
Radiation	9.1 ± 1.1	12.4 ± 1.3	10.2 ± 2.3	8.8 ± 0.9	11.2 ± 0.9	21.7 ± 1.4	6.3 ± 1.2	13.4 ± 1.1
Had / Frag	7.7 ± 1.1	8.0 ± 1.3	7.4 ± 2.3	7.5 ± 0.9	7.7 ± 0.8	5.1 ± 1.3	6.9 ± 1.2	7.8 ± 1.1
Total	19	26	21	17	17	32	18	21
		Uncertainties on TF to WCR [%]						
Hard Scatter	21.5 ± 1.2	21.5 ± 1.2	21.5 ± 1.2	26.2 ± 1.3	35.2 ± 1.5	21.5 ± 1.1	21.5 ± 1.4	22.1 ± 1.3
Radiation	20.5 ± 1.2	20.5 ± 1.2	20.5 ± 1.2	24.1 ± 1.2	18.9 ± 1.3	20.5 ± 1.1	20.6 ± 1.3	21.0 ± 1.3
Had / Frag	6.3 ± 1.1	6.3 ± 1.1	6.3 ± 1.1	7.2 ± 1.1	7.1 ± 1.2	3.4 ± 1.0	6.3 ± 1.3	6.6 ± 1.2
Total	36	40	37	40	44	44	35	38
		Uncertainties on TF to STCR [%]						
Hard Scatter	5.5 ± 1.3	5.5 ± 1.3	6.5 ± 2.0	5.9 ± 1.5	5.2 ± 1.2	-	6.7 ± 1.8	5.5 ± 1.2
Radiation	3.9 ± 0.7	3.9 ± 0.7	5.0 ± 1.0	3.9 ± 0.8	3.7 ± 0.6	-	4.5 ± 0.9	3.7 ± 0.6
Had / Frag	6.3 ± 0.7	6.3 ± 0.7	6.3 ± 1.0	6.4 ± 0.8	5.8 ± 0.6	-	6.3 ± 0.9	6.3 ± 0.6
Total	9	9	10	10	9	-	10	9

Background-only Fit Result

Four free fit parameters yield normalisation of four major backgrounds

• Systematics treated as nuisance parameters (Gaussian smearing)

13.2^{-1} fb	mu_ttbar	mu_wjet	mu_wt	mu_ttZ
SR1	1.03 ± 0.07	0.76 ± 0.08	1.07 ± 0.30	1.43 ± 0.21
tN_high	1.06 ± 0.15	0.78 ± 0.08	1.30 ± 0.45	1.39 ± 0.22
bC2x_med	0.95 ± 0.12	0.85 ± 0.06	0.97 ± 0.28	1.30 ± 0.23
bC2x_diag	0.89 ± 0.10	0.87 ± 0.07	1.26 ± 0.31	1.40 ± 0.21
bCbv	0.73 ± 0.22	0.97 ± 0.12	_	_
DM_low	0.90 ± 0.17	0.94 ± 0.13	1.36 ± 0.36	1.47 ± 0.22
DM_high	1.01 ± 0.13	0.91 ± 0.07	1.02 ± 0.32	1.42 ± 0.21

SPS and ÖPG Joint Annual Meeting 2017, Johanna Gramling

DE GENÈVE

Event display

Enforced event topology clearly visible - no other problems spotted

understand the excess

Characteristics

Excess tends to small E_T^{miss} and m_T

No clear trend with am_{T^2} and H_T^{miss} significance

same picture holds for other "suspicious SRs"

understand the excess

Striking: excess seems to be favouring 1-b-jet bin

not the case for other "suspicious SRs"

b-jet p_T and angular distributions look unproblematic

b-jets

4.5

understand the excess

SR overlaps

Signal-like backgrounds (e.g. ttV) have larger overlaps than ttbar/Wjets

 Excesses from common problem of ttbar/Wjets estimate unlikely

Sample	DM_low unique	DM_low and SR1	DM_low and bC2x_diag
ttbar	69 %	26 %	11 %
singletop	58 %	19 %	27 %
wjets_22	78 %	18 %	7 %
diboson	74 %	25 %	9 %
ttv	41 %	41 %	41 %

Distributions in CRs and VRs

E_{T^{miss}: sensitive to signals}

m_⊤: used for extrapolation

No apparent issues

Background

estimate

Distributions in CRs and VRs

E_T^{miss}: sensitive to signals

m_T: used for extrapolation

No apparent issues

Background

estimate

Background estimate

Distributions in CRs and VRs

E_{T^{miss}: sensitive to signals}

m_T: used for extrapolation

No apparent issues

Non-canonical VRs

No NFs applied - not trivial which ones to use but: W+jets scaled down to 0.75 (consistent with most SR fits)

W - m_T-tail

- 1. Four jets with $p_T > 100, 80, 50, 25$ GeV.
- 2. $E_{\rm T}^{\rm miss} > 200 \text{ GeV}.$
- 3. $m_{\rm T} > 100$ GeV.

DE GENEVE

4. Exactly zero b-jets.

am_{T2}-tail

- 1. Four jets with $p_T > 80, 60, 60, 40$ GeV.
- 2. $E_{\rm T}^{\rm miss} > 200 \text{ GeV}.$
- 3. $30 < m_T < 90$ GeV.
- 4. $am_{T2} > 200$ GeV.
- 5. $H_{T,sig}^{miss} > 8$.
- 6. Exactly 1 b-jet.

1L1τ

- 1. Four jets with $p_T > 80, 50, 40, 25$ GeV.
- 2. $E_{\rm T}^{\rm miss} > 200 \text{ GeV}.$
- 3. $m_{\rm T} > 100$ GeV.
- 4. At least one b-jet.
- 5. One loose reco τ and one signal lepton.
- 6. $m_T > 40 \text{ GeV}$

INIVERSITI

DE GENÈVE

Non-canonical VRs

low-amT2

Selection identical to tN SRs, but an upper am_{T2} cut of 130 GeV

Background estimate

Background missing?

Higgs should be negligible (no derivations were available, not tested)

• most likely: ttH, but should be mostly removed by E_T^{miss} cut

Z+jets small but not negligible

• reintroduced on-the-way

Other possible small backgrounds: < 1%

total	DM_low	total	SR1	total
8.15 ± 0.48	ttbar	4.80 ± 0.39	ttbar	8.05 ± 0.49
4.40 ± 0.33	single top	1.35 ± 0.21	single top	3.10 ± 0.22
1.50 ± 0.21	W+jets	3.70 ± 0.47	W+jets	3.39 ± 0.38
6.24 ± 0.13	ttbar+V	4.73 ± 0.11	ttbar+V	6.03 ± 0.13
0.31 ± 0.08	diboson	1.43 ± 0.21	diboson	1.04 ± 0.19
0.30 ± 0.15	Z+jets	0.14 ± 0.03	Z+jets	0.51 ± 0.18
0.14 ± 0.02	$\mathbf{t}\mathbf{Z}$	0.11 ± 0.02	$\mathbf{t}\mathbf{Z}$	0.05 ± 0.01
0.07 ± 0.01	tttt	0.00 ± 0.00	tttt	0.06 ± 0.01
0.04 ± 0.01	ttWW	0.01 ± 0.01	ttWW	0.05 ± 0.01
0.03 ± 0.01	tZW	0.01 ± 0.01	tZW	0.02 ± 0.01
21.16 ± 0.65	Total SM	16.27 ± 0.69	Total SM	22.30 ± 0.72
37	Data	35	Data	37
	total 8.15 ± 0.48 4.40 ± 0.33 1.50 ± 0.21 6.24 ± 0.13 0.31 ± 0.08 0.30 ± 0.15 0.14 ± 0.02 0.07 ± 0.01 0.03 ± 0.01 21.16 ± 0.65 37	totalDM_low 8.15 ± 0.48 ttbar 4.40 ± 0.33 single top 1.50 ± 0.21 $W+$ jets 6.24 ± 0.13 ttbar+V 0.31 ± 0.08 diboson 0.30 ± 0.15 $Z+$ jets 0.14 ± 0.02 tZ 0.07 ± 0.01 tttt 0.03 ± 0.01 ttWW 0.03 ± 0.01 tZW 21.16 ± 0.65 Total SM 37 Data	total DM_low total 8.15 ± 0.48 ttbar 4.80 ± 0.39 4.40 ± 0.33 single top 1.35 ± 0.21 1.50 ± 0.21 $W+jets$ 3.70 ± 0.47 6.24 ± 0.13 ttbar+V 4.73 ± 0.11 0.31 ± 0.08 diboson 1.43 ± 0.21 0.30 ± 0.15 $Z+jets$ 0.14 ± 0.03 0.14 ± 0.02 tZ 0.11 ± 0.02 0.07 ± 0.01 tttt 0.00 ± 0.00 0.04 ± 0.01 ttWW 0.01 ± 0.01 21.16 ± 0.65 Total SM 16.27 ± 0.69 37 Data 35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Focus on ttZ

Observed NF of roughly 1.5 \rightarrow could point to missing background in CR

• Reminder: use $tt\gamma$ to estimate ttZ

Indeed, W+ γ was not included, but is ~10% of total events in CR

• consistent with 7 TeV tty analysis (also, this analysis lets one expect $3\% Z + \gamma \rightarrow$ neglected)

Inclusion of W+γ made NF go down, hence significance of excess went up

(
ttZ CR DM low	total
ttgamma	112.75 ± 1.93
Wgamma	20.79 ± 0.56
ttbar	6.79 ± 0.91
single top	2.08 ± 0.45
W+jets	0.11 ± 0.06
ttbar+V	1.14 ± 0.04
diboson	0.20 ± 0.10
Z+jets	0.33 ± 0.10
Total SM	144.25 ± 2.26
Data	206

(table numbers all pre-fit)

after fit,W+gamma is ~10%

Background estimate

Focus on ttZ

To confirm high NF, trilepton VR for ttZ({{}) was built

- main issue: statistics!
- Dilepton system is treated as invisible to mimic ttZ(inv) ET^{miss}

Observed data ~1.5 times above MC \rightarrow NF seems correct

		$\begin{array}{c c} \hline & ATLAS Work in progress \\ \hline & Data \\ \hline & Total SM \\ \hline & TtZ \\ \hline & 16 \\ \hline$
$ttZll_CR$	total	
$\mathrm{tt}\mathrm{Z}$	15.85 ± 0.17	8 4
diboson	5.33 ± 0.79	
Total SM	21.18 ± 0.81	
Data	32	
		m _{ll} [Gev]

22 ATLAC Wark in program

Data

Objects

Lepton channels

No difference between electron and muon channel

Run conditions, pile-up

Pile-up

Excess is present for low and high pile-up

Events vs. Runs

Nicely flat events per luminosity at preselection

• Also flat events per luminosity in the SRs (in red grouped into DS1.x/DS2)

SR1 systs - ttbar

