

The XENON100 Detector for Dark Matter Searches

Alexander Kish Physics Institute, University of Zürich

CHIPP Plenary Meeting

Gersau, Switzerland

August 23, 2010

Outline

- light detection in the XENON100 detector
- reconstruction of the event vertex
- energy calibration
- electronic recoil background

Light detection in XENON100

Hamamatsu R8520

- 2.5 x 2.5 mm window
- low radioactivity (~10mBq/PMT)

- Top array concentric circles to optimize fiducial cut efficiency
- Bottom PMTs rectangular grid to maximize photocathode coverage
- Average QE: top 23%, bottom ~33%

Target Volume

Top PMT array (98 PMTs)

Bottom PMT array (80 PMTs)

Veto Volume

Top/Side Top arrays (32 PMTs)

Bottom/Side Bottom arrays (32 PMTs)

PMT gain calibration

- weekly calibration external with blue LED + optical fibers setup
- PMT gains are equalized

• cuts for noise reduction

 Calibration with point-like sources ¹³⁷Cs (662 keV), ⁵⁷Co (122 keV), ⁶⁰Co (1.17, 1.33 MeV), and Am-Be sources

- Calibration with internal uniformly distributed sources
- neutron activated xenon: ^{131m}Xe (164 keV; 11.8 d), ^{129m}Xe (236 keV; 8.9 d)
- 83m Kr (9 keV, 32 keV, 41 keV; T_{1/2} = 1.8 h) from 83 Rb decay

Spatially uniform calibration of a liquid xenon detector at low energies using ^{83m}Kr

A. Manalaysay,^{1,2,*} T. Marrodán Undagoitia,¹ A. Askin,¹ L. Baudis,¹ A. Behrens,¹ A. D. Ferella,¹ A. Kish,¹ O. Lebeda,³ R. Santorelli,¹ D. Vénos,³ and A. Vollhardt¹ Rev. Sci. Instrum. **81**, 073303 (2010)

Reconstruction of the event vertex with neural network

• Z-position inferred by the delay time between the S1 and S2

• XY reconstruction with

- support vector machines
- χ^2 minimization
- neural network

• algorithms trained on simulated light patterns

- liquid level between the anode and the lower mesh
- proportional scintillation in the gas phase

Reconstruction of the event vertex with neural network

• The neural network is a multi-layer perceptron with 98 input neurons (top PMT array) and two output neurons (X and Y coordinates of an event)

- Performance is verified on MC and measured data
- Reconstruction uncertainty of the radial position σ < 2 mm

Light collection efficiency and spatial corrections for S1

- Collection efficiency for S1 signal
- simulated with GEANT4
- measured at 39.6, 164, 662 keV (agreement within 3%)
- detector response modeled with GEANT4

measurement (¹³⁷Cs)

 Spatial corrections for S1 energy resolution improves from 24% to 13% at 662 keV

p.8

Alexander Kish

Collection efficiency and spatial corrections for S2

• Correction for increase of e⁻ lifetime in LXe 1st scientific run: $154\mu s \rightarrow 192\mu s$ correction $75\% \rightarrow 60\%$

Correction for the LCE variation S2 energy resolution improves from 7.3% to 6.5%

XENON100

Gersau, Switzerland

CHIPP Plenary Meeting

August 23, 2010

Combined energy scale

- recombination suppression by the external field results in more free electrons and less scintillation photons
- S1 and S2 are anti-correlated
- projection along the major axis of the ellipse provides field-independent combined energy scale

Sources of electron recoil background

- natural radioactivity in the detector and shield materials;
- ²²²Rn contamination in the shield cavity;
- intrinsic contamination of ²²²Rn, ⁸⁵Kr;
- cosmogenic xenon activation during storage at the Earth surface.

Sources of nuclear recoil background

• (α ,n) reactions from ²³²Th, ²³⁸U and ²³⁵U decay chains and spontaneous fission of ²³⁸U;

• muon-induced neutrons.

- all materials screened for radioactive contamination
- screening facility at LNGS

CHIPP Plenary Meeting

p.12

-10

[w] Z

-20

-25

Electronic recoil background

- Intrinsic radon contamination:
- ' β - α ' delayed coincidence analysis
- upper limit 21µBq/kg
- Krypton in LXe:
- ' β - γ ' delayed coincidence analysis

65 kg

40 kg

- ^{nat}Kr concentration (143⁺¹³⁰₋₉₀) ppt (mol/mol)

10-1

- 40 kg fiducial volume cut 88% BG reduction
- veto coincidence cut additional 70-75% reduction
- intrinsic ⁸⁵Kr dominates the BG in the inner volume

MC

• Good agreement of the background model with the measured spectrum

• Background in the fiducial volume two orders of magnitude lower than in XENON10, and any competing Dark Matter experiment

p.14

- This work helped to understand and improve the detector response (reconstruction of the event vertex, energy resolution)
- The lowest background in a dark matter experiment has been achieved and explained
- First results on the cross-section of the spin-independent WIMP-nucleon elastic scattering are obtained on 11.17 live days from run_07 and accepted for publication in PRL (arXiv:1005.0380)

• More than >100 live days of data are acquired in Run_08. Preparing to unblind.